Min-Min Operation on Intuitionistic Fuzzy Matrix

K. Lalitha
Assistant Professor
Department of Mathematics,
T.K.G. Arts College, Vriddhachalam, Tamilnadu, India.

Abstract

In this paper Min-Min operation on IFMs and study conditions for convergence powers of transitive IFM are introduced. Keywords and Phrases: Intuitionistic fuzzy set (IFS), Intuitionistic fuzzy implication operator (IFIO), Intuitionistic fuzzy matrix (IFM)

I. Introduction

Since Zadeh [11] introduction of fuzzy sets. Atanassov [1] generalized the concept of fuzzy sets into intuitionistic fuzzy set (IFS) A in X (universal set) is defined as an object of the following from $A=\left\{\left\langle x, \mu_{A}(x), \gamma_{A}(x)\right\rangle / x \in X\right\}$ where the functions: $\mu_{A}(x): x \rightarrow$ $[0,1]$ and $\gamma_{A}(x): X \rightarrow[0,1]$ define the membership function and non-membership function of the element $x \in X$ respectively and for every $x \in X: 0 \leq \mu_{A}(x)+\gamma_{A}(x) \leq 1$. Xu, Yager [10] defined an Intuitionistic Fuzzy Matrix (IFM). A as $A=\left[\left\langle a_{i j_{\mu}}, a_{i j_{\gamma}}\right\rangle\right]$ where $a_{i j_{\mu}}$ and $a_{i j_{\gamma}}$ denote the membership and non-membership value respectively.

After the introduction of Fuzzy Matrix (FM) theory using Max-Min algebra by Thomson [9], Bhowmik and Pal [3] studies the convergence of the Max-Min of an IFM by Hashimoto [4] and several others have studied the convergence of power of a fuzzy transitive matrix. Further, the Max-Min operation has been extended to IFM. Atanassov [2] used implication operators in IFSs. Sriram and Murugadas [8] used \leftarrow implication operator for IFM and studied concept of g-inverse and semi-inverse of an IFM which was a generalization of FM studied. Murugadas and Lalitha [5] used hook implication operator \leftarrow for IFS as well as IFM. Muthuraji, Sriram and Murugadas [6] used min-min composition of IFM. Riyaz Ahmad padder and Murugadas [7] Max-Max operation on Intuitionistic fuzzy Matrix.

In this paper we introduce Min-Min operation directly to IFMs which is more relevant than Max-Min operation. For example, consider two IFMs A and B such that

$$
A=\left(\begin{array}{ll}
\langle .3, .2\rangle & \langle .4, .1\rangle \\
\langle .1, .5\rangle & \langle .1, .8\rangle
\end{array}\right) \operatorname{and} B=\left(\begin{array}{ll}
\langle 0.3,0.4\rangle & \langle 0.5,0.2\rangle \\
\langle 0.2,0.5\rangle & \langle 0.3,0.6\rangle
\end{array}\right)
$$

Then Max-Min $A B=\left(\begin{array}{ll}\langle 0.3,0.4\rangle & \langle 0.3,0.2\rangle \\ \langle 0.1,0.5\rangle & \langle 0.1,0.5\rangle\end{array}\right)$
Then Min-Min $A B=\left(\begin{array}{ll}\langle 0.2,0.5\rangle & \langle 0.3,0.6\rangle \\ \langle 0.1,0.8\rangle & \langle 0.1,0.8\rangle\end{array}\right)$
Thus Min-Min $A B \leq$ Max-Min $A B$.

II. Preliminaries

Let $\left\langle x, x^{\prime}\right\rangle,\left\langle y, y^{\prime}\right\rangle \in \operatorname{IFS}$ then $\left\langle x, x^{\prime}\right\rangle \vee\left\langle y, y^{\prime}\right\rangle=\left\langle\operatorname{Min}\{x, y\}, \operatorname{Max}\left\{x^{\prime}, y^{\prime}\right\}\right\rangle$
For any two comparable elements $\left\langle x, x^{\prime}\right\rangle,\left\langle y, y^{\prime}\right\rangle \in$ IFS the operation $\left\langle x, x^{\prime}\right\rangle \leftarrow\left\langle y, y^{\prime}\right\rangle$ is defined as

$$
\left\langle x, x^{\prime}\right\rangle \leftarrow\left\langle y, y^{\prime}\right\rangle=\left(\begin{array}{ll}
\langle 1,0\rangle & \text { if }\left\langle x, x^{\prime}\right\rangle \geq\left\langle y, y^{\prime}\right\rangle \\
\left\langle x, x^{\prime}\right\rangle & \text { if }\left\langle x, x^{\prime}\right\rangle<\left\langle y, y^{\prime}\right\rangle
\end{array}\right.
$$

For $n \times n$ intuitionistic fuzzy matrices $A=\left\langle a_{i j}, a_{i j}{ }^{\prime}\right\rangle$ and $P=\left[\left\langle p_{i j}, p_{i j}{ }^{\prime}\right]\right.$ then

$$
\begin{aligned}
& A \wedge P=\left(\left\langle a_{i j} \wedge p_{i j}, a_{i j}^{\prime} \vee p_{i j}{ }^{\prime}\right\rangle\right) \\
& A \vee P=\left(\left\langle a_{i j} \vee p_{i j}, a_{i j}^{\prime} \wedge p_{i j}^{\prime}\right\rangle\right)
\end{aligned}
$$

Here $A \vee P, A \wedge P$ are equivalent to $A+P, A \odot P$ the component wise additional and component wise multiplication A, P respectively.
$A \times P=\left(a_{i l}, a_{i l}{ }^{\prime} \wedge p_{l j}, p_{l j}{ }^{\prime}\right) \vee\left(a_{i 2}, a_{i 2}{ }^{\prime} \wedge p_{2 j}, p_{2 j}{ }^{\prime}\right) \vee \cdots \vee\left(a_{i n}, a_{i n}{ }^{\prime} \wedge p_{n j}, p_{n j}{ }^{\prime}\right)$
$A \stackrel{c}{\leftarrow} P=\left\langle a_{i j}, a_{i j}{ }^{\prime}\right\rangle \stackrel{c}{\leftarrow}\left\langle p_{i j}, p_{i j}{ }^{\prime}\right\rangle$.
Here $\stackrel{c}{\leftarrow}$ represents component wise comparison of A, P using \leftarrow.
$A^{\circ}=I=\left(\delta_{i j}, \delta_{i j}{ }^{\prime}\right)$ where $\left\langle\delta_{i j}, \delta_{i j}{ }^{\prime}\right\rangle=\langle 1,0\rangle$ if $i=J$ and $\left\langle\delta_{i j}, \delta_{i j}{ }^{\prime}\right\rangle=\langle 0,1\rangle$ if $i \neq j$.
$A^{k+1}=A^{k} \times A, k=0,1,2, \cdots$
$A \leq P(P \geq A)$ if and only if $\left\langle a_{i j}, a_{i j}{ }^{\prime}\right\rangle \leq\left\langle p_{i j}, p_{i j}{ }^{\prime}\right.$ for all i, j.
If $A \geq I_{n}$, then A is reflexive IFM where in the $n \times n$ identity IFM. $A=\left\langle a_{i j}, a_{i j}{ }^{\prime}\right\rangle$ is weakly reflexive IFM if and only if $\left\langle a_{i j}, a_{i j}{ }^{\prime}\right\rangle \geq\left\langle a_{i j}, a_{i j}{ }^{\prime}\right\rangle$ for all $i, j=1,2, \cdots, n$.

Throughout we deal with intuitionistic fuzzy matrices. A matrix A is transitive if $A^{2} \leq A$. This matrix represents a intuitionstic fuzzy transitive relation. The above definition of transitivity is equivalent to what is called Max-Min transitivity. That is, matrix $A=$ $\left\langle a_{i j}, a_{i j}{ }^{\prime}\right\rangle$ is transitive if and only if $\min \left(\left\langle a_{i k}, a_{i k}{ }^{\prime}\right\rangle,\left\langle a_{k j}, a_{k j}{ }^{\prime}\right) \leq\left\langle a_{i j}, a_{i j}{ }^{\prime}\right\rangle\right.$, for all k. This definition is most basic and seems to be convenient when intuitionistic fuzzy matrices are generalized to certain matrices over other algebras.

III. SOME RESULTS

I define Min-Min operation on IFM and exhibit some interesting results. In the following, let $A=\left[\left\langle a_{i j}, a_{i j}{ }^{\prime}\right\rangle\right], P=\left[\left\langle p_{i j}, p_{i j}{ }^{\prime}\right\rangle\right]$ be IFM of order $n \times n$ and the entries in A and P are comparable.

Definition 3.1 For IFMs A and P define, the Min-Min product of A and P as

$$
A \bullet P=\left(\bigwedge_{k=1}^{n}\left\langle a_{i k} \wedge p_{k j},{ }_{k=1}^{n}\left\langle a_{i k}{ }^{\prime} \vee p_{k j}{ }^{\prime}\right\rangle\right)\right.
$$

Let $A \bullet P$ denote the Min-Min product of the IFMs A and P.
Clearly $A \bullet P$ is also an IFM, \bullet is associative and \bullet is distributive over addition (+). Also the set of all IFM under + and \bullet from a semi-ring.

Theorem 3.2If A is an $n \times n$ transitive matrix, then $(A \stackrel{c}{\leftarrow}(A \times P))^{n}=(A \stackrel{c}{\leftarrow}(A \times P))^{n+1}$ for any $n \times n$ IFMP.
Proof. Let $S=\left\langle s_{i j}, s_{i j}{ }^{\prime}\right\rangle=A \stackrel{c}{\leftarrow}(A \times P)$, that is

$$
\left\langle s_{i j}, s_{i j}^{\prime}\right\rangle=\left\langle a_{i j}, a_{i j}{ }^{\prime}\right\rangle \stackrel{c}{\leftarrow}\left(\bigvee_{k=1}^{n}\left(a_{i k} \wedge p_{k j}\right), \wedge_{k=1}^{n}\left(a_{i k}^{\prime} \vee p_{k j}^{\prime}\right)\right)
$$

1. Assume that there exist indices $l_{1}, l_{2}, \cdots, l_{n-1}$ such that

$$
\left\langle s_{i l_{1}}, s_{i l_{1}}{ }^{\prime}\right\rangle \vee\left\langle s_{l_{1} l_{2}}, s_{l_{1} l_{2}}{ }^{\prime}\right\rangle \vee \cdots \vee\left\langle s_{l_{n-1} j}, s_{l_{n-1} j}{ }^{\prime}\right\rangle=\left\langle f, f^{\prime}\right\rangle<\langle 1,0\rangle
$$

$$
\text { Let } l_{o}=i \text { and } l_{n}=j \text {. Then } l_{a}=l_{b} \text { for some } a \text { and } b(a>b) \text {. We define }\left\langle h, h^{\prime}\right\rangle \text { by }
$$

$$
\text { where } a>m \geq b
$$

$$
\left\langle h, h^{\prime}\right\rangle=\left\langle a_{l_{a} l_{a+1}}, a_{l_{a} l_{a+1}}\right\rangle \vee\left\langle r_{l_{a+1} l_{a+2}}, r_{l_{a+1} l_{a+2}}\right\rangle \vee \cdots \vee\left\langle a_{l_{b-1} l_{b}}, r_{l_{b-1} l_{b}}\right\rangle
$$

$$
\text { Then }\left\langle h, h^{\prime}\right\rangle=\left\langle a_{l_{m-1} l_{m}}, a_{l_{m-1} l_{m}}{ }^{\prime}\right\rangle<\left({\left.\underset{k=1}{\vee} \underset{n}{\vee}\left\langle a_{l m k} \wedge p_{k l m}\right\rangle,{ }_{k=1}^{n}\left\langle a_{l m k}{ }^{\prime} \vee p_{k l m}{ }^{\prime}\right\rangle\right)}^{n}\right.
$$

$$
\text { If }\left\langle a_{l_{m} l_{m}}, r_{l_{m} l_{m}}{ }^{\prime}\right\rangle \geq\left(\vee_{k=1}^{n}\left\langle a_{l m k}^{\prime} \wedge p_{k l m}\right\rangle, \wedge_{K=1}^{n}\left\langle a_{l m k}^{\prime} \vee p_{k l m}{ }^{\prime}\right\rangle\right)
$$

$$
\left\langle h, h^{\prime}\right\rangle \geq\left\langle a_{l_{m} l_{m}}, a_{l_{m} l_{m}}{ }^{\prime}\right\rangle \geq\left\langle a_{l_{m}}, \wedge p_{k_{1} l m}, a_{l m k_{1}}^{\prime}, a_{l_{m} k_{1}}^{\prime} \vee p_{k_{1} l_{m}}{ }^{\prime}\right\rangle
$$

$$
=\left\langle a_{l_{a} l_{a+1}}, a_{l_{a} l_{a+1}}\right\rangle \wedge\left\langle a_{l_{a+1}} l_{a+2}, a_{l_{a+1}} l_{a+2}\right\rangle \wedge \cdots \wedge\left\langle a_{l_{b-1} l_{b}}, a_{l_{b-1} l_{b}}{ }^{\prime}\right\rangle
$$

for some k_{1}. Since $\left\langle a_{l_{m-1} l_{m_{1}}} a_{l_{m-1} l_{m}}{ }^{\prime}\right\rangle=\left\langle h, h^{\prime}\right\rangle$ we have

$$
\left\langle a_{l_{m-1} k-1}, a_{l_{m-1} k_{1}}\right\rangle \leq\left\langle a_{l_{m-1} l_{m}}, a_{l_{m-1} l_{m}}{ }^{\prime}\right\rangle \wedge\left\langle a_{l_{m} k_{1}}, a_{l_{m} k_{1}}{ }^{\prime}\left\langle a_{l_{m} k_{1}}, a_{l_{m} k_{1}}{ }^{\prime}\right\rangle=\left\langle h, h^{\prime}\right\rangle\right.
$$

Thus,

$$
\left(\bigvee_{k=1}^{\vee}\left\langle a_{l_{m-1} k} \wedge p_{k l_{m}}\right\rangle, \wedge_{k=1}^{n}\left\langle a_{l_{m-1} k^{\prime}}, \vee p_{k l_{m}}{ }^{\prime}\right) \leq\left\langle a_{l_{m-1} k_{1}}, a_{l_{m-1} k_{1}}\right\rangle \wedge\left\langle p_{k_{1} l_{m}}, p_{k l_{m}}{ }^{\prime}\right\rangle \leq\left\langle h, h^{\prime}\right\rangle\right.
$$

which is contradiction. So,

$$
\left\langle a_{l_{m} l_{m}}, a_{l_{m} l_{m}}{ }^{\prime}\right\rangle<\left(\sum_{k=1}^{\vee}\left\langle a_{l_{m} k} \wedge p_{k l_{m}}\right\rangle, \Lambda_{k=1^{n}}\left\langle a_{l_{m} k}{ }^{\prime} \vee p_{k l_{m}}{ }^{\prime}\right\rangle\right)
$$

Hence $\left\langle s_{l_{m} l_{m}}, s_{l_{m} l_{m}}{ }^{\prime}\right\rangle \leq\left\langle h, h^{\prime}\right\rangle \leq\left\langle g, g^{\prime}\right\rangle$
Therefore $\left\langle s_{i j}^{n+1}, s_{i j}^{n+1}\right\rangle \leq\left\langle g, g^{\prime}\right\rangle$.
2. Assume that there exist indices $l_{1}, l_{2}, \cdots, l_{n}$ such that

$$
\left\langle s_{i l_{1}}, s_{i l_{1}}^{\prime}\right\rangle \vee\left\langle s_{l_{1} l_{2}}, s_{l_{1} l_{2}}^{\prime}\right\rangle \vee \cdots \vee\left\langle s_{l n j}, s_{l n j}^{\prime}\right\rangle=\left\langle g, g^{\prime}\right\rangle<\langle 1,0\rangle .
$$

Let $l_{o}=i$ and $l_{n+1}=j$
(a) Assume $l_{a}=l_{b}=l_{c}$ where $a>b>c$. Then we have

$$
\left\langle s_{l_{m} l_{m}}, s_{l_{m} l_{m}}{ }^{\prime} \leq\left\langle g, g^{\prime}\right\rangle, a>m \geq b\right.
$$

Thus,

$$
\left\langle s_{i l_{m}}^{(m)}, s_{i l_{m}}{ }^{\prime(m)}\right\rangle \vee\left\langle s_{l_{m} l_{m}}^{(c-b-c)}, s_{l_{m} l_{m}}{ }^{\prime(c-b-c)}\right\rangle \vee\left\langle s_{l_{m} l_{b}}^{(b-m)}, s_{l_{m} l_{b}}^{\prime(b-m)} \vee\left\langle s_{l_{c} j}^{(n+1-c)}, s_{l_{c} j}{ }^{\prime(n+1-c)}\right\rangle \leq\left\langle g, g^{\prime}\right\rangle\right.
$$

so $\left\langle s_{i j}^{n}, s_{i j}{ }^{\prime n}\right\rangle \leq\left\langle g, g^{\prime}\right\rangle$
(b) Assume $l_{a}=l_{b}$ and $l_{c}=l_{d}$
(i) If $a>b>c>d$ then $\left\langle s_{l_{m} l_{m}}, s_{l_{m} l_{m}}{ }^{\prime}\right\rangle \leq\left\langle g, g^{\prime}\right\rangle, a>m \geq b$ for some l_{m}.

Thus,

$$
\begin{gathered}
\left\langle s_{i l_{m}} m, s_{i l_{m}}^{\prime} m\right\rangle \vee\left\langle s_{l_{m} l_{m}}(d-c-1), s_{l_{m} l_{m}}^{\prime}(d-c-1)\right\rangle \vee\left\langle s_{l_{m} l_{c}}(c-m), s_{l_{m} l_{c}}^{\prime}(c-m)\right\rangle \vee \\
\left\langle s_{l_{d j} j}(n+1-d), s_{l_{d} j}(n+1-d)\right\rangle \leq\left\langle g, g^{\prime}\right\rangle
\end{gathered}
$$

So $\left\langle s_{i j} n, s_{i j}{ }^{\prime} n\right\rangle \leq\left\langle g, g^{\prime}\right\rangle$.
(ii) If $a>c>b>d$ then $\left\langle s_{l_{m} l_{m}}, s_{l_{m} l_{m}}{ }^{\prime}\right\rangle \leq\left\langle h, h^{\prime}\right\rangle \leq\left\langle g, g^{\prime}\right\rangle, a>m \geq b$ for some l_{m} where

$$
\begin{gathered}
\left\langle h, h^{\prime}\right\rangle=\left\langle a_{l_{m-1} l_{m}}, a_{l_{m-1} l_{m}}{ }^{\prime}\right\rangle \\
=\left\langle a_{l_{n} l_{n+1}}, a_{l_{n} l_{n+1}}{ }^{\prime}\right\rangle \vee \cdots \vee\left\langle a_{i_{b+1} l_{b}}, a_{l_{b-1} l_{b}}{ }^{\prime}\right\rangle
\end{gathered}
$$

Since it is clear that $\left\langle s_{i j} n, s_{i j}^{\prime} n\right\rangle \leq\left\langle g, g^{\prime}\right\rangle$ for $m \geq c$, suppose that $m>c$. If

$$
\left\langle a_{l_{a} l_{m}}, a_{l_{a} l_{m}}{ }^{\prime}\right\rangle \geq\left(\sum_{k=1}^{\vee}\left\langle a_{l_{a} K} \wedge p_{k l_{m}}\right\rangle, \wedge_{k=1}^{n}\left\langle a_{l_{a} k}{ }^{\prime} \vee p_{k l_{m}}{ }^{\prime}\right\rangle\right)
$$

Then
$\left\langle g, g^{\prime}\right\rangle \geq\left\langle h, h^{\prime}\right\rangle \geq\left\langle a_{l_{a} l_{m}}, a_{l_{a} l_{m}}^{\prime}\right\rangle \geq\left\langle a_{l_{n} k_{1}}, a_{l_{n} k_{1}}^{\prime}\right\rangle \wedge\left\langle p_{k_{1} l_{m}}, p_{k_{1} l_{m}}^{\prime}\right\rangle$ for some k_{1}.
Thus

$$
\left\langle a_{l_{m-1} K_{1}}, a_{l_{m-1} k_{1}}\right\rangle \leq\left\langle a_{l_{m-1} l_{m}}, a_{l m-1 l_{m}}{ }^{\prime}\right\rangle \vee\left\langle a_{l_{m} l_{n}}, a_{l_{m} l_{n}}{ }^{\prime}\right\rangle \wedge\left\langle a_{l_{a} k_{1}}, a_{l_{a} k_{1}}{ }^{\prime}\right\rangle=\left\langle h, h^{\prime}\right\rangle
$$

we have

$$
\left(\stackrel{V}{k=1}_{n}\left\langle a_{l_{m-1} k} \wedge p_{k l_{m}}\right\rangle, \stackrel{\wedge}{n=1}\left\langle\left\langle a_{l_{m-1} k}{ }^{\prime} \vee p_{k l_{m}}{ }^{\prime}\right\rangle\right) \leq\left\langle a_{l_{m-1} k_{1}}, a_{l_{m-1} k_{1}}{ }^{\prime}\right\rangle \vee\left\langle p_{k_{1} l_{m}}, p_{k l_{m}}{ }^{\prime}\right\rangle \leq\left\langle h, h^{\prime}\right\rangle\right.
$$

which contradicts the fact that

$$
\left\langle h, h^{\prime}\right\rangle=\left\langle s_{l_{m-1} l_{m}}, s_{l_{m-1} l_{m}}\right\rangle<0
$$

So $\left\langle s_{l_{m} l_{m}}, s_{l_{m} l_{m}}{ }^{\prime}\right\rangle \leq\left\langle g, g^{\prime}\right\rangle$.
Hence $\left\langle s_{i l_{a}}(a), s_{i l_{a}}{ }^{\prime}(a)\right\rangle \vee\left\langle s_{l_{a} l_{m}}, s_{l_{a} l_{m}}{ }^{\prime}\right\rangle \vee\left\langle s_{l_{m} l_{m}}^{(m-a-2)}, s_{l_{m} l_{m}}{ }^{\prime(m-a-2)}\right\rangle \vee\left\langle s_{l_{m j}}^{(n+1-m)}, s_{l_{m j}}{ }^{\prime(n+1-m)}\right\rangle \leq\left\langle g, g^{\prime}\right\rangle$.
3. If $a>c>d>b$ then $\left\langle s_{l_{m} l_{m}}, s_{l_{m} l_{m}}{ }^{\prime}\right\rangle \leq\left\langle g, g^{\prime}\right\rangle, a>m \geq b$ for some....

It is clear that $\left\langle s_{i j}(n), s_{i j}{ }^{\prime}(n)\right\rangle \leq\left\langle g, g^{\prime}\right\rangle$ for $m \geq c$ (or) $d \geq m$. Suppose that $c \geq m \geq d$.
By the same argument as in (ii) we have
$\left\langle s_{l_{m} l_{m}}, s_{l_{m} l_{m}}{ }^{\prime}\right\rangle \leq\left\langle g, g^{\prime}\right\rangle$ then

$$
\left.\left\langle s_{i l_{a}}(a), s_{i l_{a}}{ }^{\prime}(a)\right\rangle \vee\left\langle s_{l_{a} l_{m}}, s_{l_{a} l_{m}}{ }^{\prime}\right\rangle \vee\left\langle s_{l_{m} l_{n}}^{(m-a-2)}, s_{l_{m} l_{n}^{\prime}}{ }^{(m-a-2)}\right\rangle \vee\left\langle s_{l_{m j}}^{(n+1-m)}, s_{l_{m j}}{ }^{\prime(n+1-m)}\right\rangle \leq g^{\prime}\right\rangle .
$$

Example 3.3 $A=\left(\begin{array}{ll}\langle 1,0\rangle & \langle 0.1,0.5\rangle \\ \langle 0.3,0.5\rangle & \langle 1,0\rangle\end{array}\right)$ and $P=\left(\begin{array}{ll}\langle 0.1,0.6\rangle & \langle 0.5,0.2\rangle \\ \langle 0.4,0.5\rangle & \langle 0.3,0.2\rangle\end{array}\right)$
$\langle 1,0\rangle\rangle\left(\begin{array}{ll}\langle 0.4,0.5\rangle & \langle 0.3,0.2\rangle\end{array}\right)$

Then $S^{3}=S^{2} \times S=\left(\begin{array}{ll}\langle 1,0\rangle & \langle 0.1,0.5\rangle \\ \langle 0.3,0.5\rangle & \langle 1,0\rangle\end{array}\right)$
Thus we have $S^{3}=S^{2}$
From Theorem 3.2, we get the following two results.
Corollary 3.4 If A is an $n \times n$ transitivematrix, then $(A \stackrel{c}{\leftarrow}(P \times A))^{n}=(A \stackrel{c}{\leftarrow}(P \times A))^{n+1}$ forany $n \times n$ matrix P.
Corollary 3.5 Let A bean $n \times n$ transitivematrix, then $A^{n}=A^{n+1}$.
We now consider conditions under which our $n \times n$ transitive matrix A fulfills the relationship $A^{n-1}=A$, where $n \geq 2$.
Theorem 3.6 Let A bean $n \times n$ matrixif $A \wedge I \geq P \geq A$ andtheMin-Minproduct $A \cdot A^{T} \leq\left(\left\langle a_{i j}, a_{i j}{ }^{\prime}\right\rangle\right)$ forsome j then $P^{n-1}=p^{n}$.
Proof. First we know that $P^{n-1} \leq P^{n}$ suppose that $\left\langle p_{i j}(n-1), p_{i j}{ }^{\prime}(n-1)\right\rangle=\left\langle c, c^{\prime}\right\rangle \leq\langle 1,0\rangle$
Then there exist indices $k_{1}, k_{2}, \cdots, k_{n-2}$ such that $\left\langle p_{i k_{1}}, p_{i k_{1}}{ }^{\prime}\right\rangle \vee\left\langle p_{k_{1} k_{2}}, p_{k_{1} k_{2}}{ }^{\prime}\right\rangle \vee \cdots \vee\left\langle p_{k_{n-2 j}}, p_{k_{n-2 j}}{ }^{\prime}\right\rangle=\left\langle c, c^{\prime}\right\rangle$
$\operatorname{Thus}\left\langle a_{i k_{1}}, a_{i k_{1}}{ }^{\prime}\right\rangle \vee\left\langle a_{k_{1} k_{2}}, a_{k_{1} k_{2}}{ }^{\prime}\right\rangle \vee \cdots \vee\left\langle a_{k_{n-2 j}}, a_{k_{n-2 j}}{ }^{\prime}\right\rangle \leq\left\langle c, c^{\prime}\right\rangle$
Let $k_{0}=i$ and $k_{n-1}=j$
(a) If $k_{a}=k_{b}$ for some a and $b(a>b)$, then $\left\langle p_{k_{a} k_{a}}(a-b), p_{k_{a} k_{a}}{ }^{\prime}(a-b)\right\rangle \leq\left\langle c, c^{\prime}\right\rangle$.

Thus

$$
\begin{gathered}
\left\langle a_{k_{a} k_{a}}, a_{k_{a} k_{a}}{ }^{\prime}(a-b)\right\rangle \leq\left\langle c, c^{\prime}\right\rangle,\left\langle a_{k_{a^{\prime} k_{b}}}, a_{\left.k_{k_{a}} k_{b}^{\prime}\right\rangle}\right\rangle \leq\left\langle c, c^{\prime}\right\rangle \\
\left\langle p_{k_{a} k_{a},}, p_{k_{a} k_{a}}{ }^{\prime}\right\rangle \leq\left\langle c, c^{\prime}\right\rangle .
\end{gathered}
$$

So

$$
\begin{gathered}
\left\langle p_{i k_{1}}, p_{i k_{1}}{ }^{\prime}\right\rangle \vee\left\langle p_{i k_{1} k_{2}}, p_{i k_{1} k_{2}}{ }^{\prime}\right\rangle \vee \cdots \vee\left\langle p_{k a_{1} k_{a},}, p_{k_{a-1} k_{a}}{ }^{\prime}\right\rangle \\
\vee\left\langle p_{k_{a} k_{a}}, p_{k_{a} k_{a}}{ }^{\prime}\right\rangle \vee\left\langle p_{k a k_{a+1}}, p_{k_{a} k_{a+1}}\right\rangle \vee \cdots \vee \vee\left\langle p_{k n-2 j}, p_{k_{n-2 j}}\right\rangle \leq\left\langle c, c^{\prime}\right\rangle .
\end{gathered}
$$

Hence $\left\langle p_{i j}(n), p_{i j}{ }^{\prime}(n) \leq\left\langle c, c^{\prime}\right\rangle\right.$
(b) Suppose that $k_{a} \neq k_{b}$ for all $a \neq b$. By hypothesis,

$$
\left\langle\bigwedge_{k=1}^{n}\left\langle a_{l k m} \wedge a_{k m l}\right\rangle, \stackrel{N}{k=1}_{\vee}^{\vee}\left\langle a_{l k m}{ }^{\prime} \vee a_{k m l}{ }^{\prime}\right\rangle\right\rangle \geq\left\langle a_{a_{k_{m} k_{m}}}, a_{k_{m} k_{m}}{ }^{\prime}\right\rangle \text { for some } m
$$

Then $\left.\left\langle a_{k_{m} k_{n}}, r_{k_{m} k_{m}}{ }^{\prime}\right\rangle \leq c, c^{\prime}\right\rangle$

$$
\left\langle p_{k_{m} k_{m}}, p_{k_{m} k_{m}}{ }^{\prime}\right\rangle \leq\left\langle c, c^{\prime}\right\rangle
$$

Thus

$$
\left.\left.\begin{array}{c}
\left\langle p_{i k_{j}}, p_{i k_{j}}{ }^{\prime}\right\rangle \vee\left\langle p_{k_{k_{k}}}, p_{k_{1} k_{2}{ }^{\prime}}\right\rangle \vee \cdots \vee\left\langle p_{k_{m-1}}, p_{k_{m-1} k_{m}}{ }^{\prime}\right\rangle \vee\left\langle p_{k_{k_{m} k_{m}}}, p_{k_{k_{m} k_{m} k_{m}}{ }^{\prime}}{ }^{\prime}\right\rangle \\
\left.p_{k k_{m+1}}\right\rangle
\end{array}\right\rangle \vee \cdots \vee\left\langle p_{k_{n-2 j}{ }^{\prime}}, p_{k_{n-2 j}}\right\rangle \leq\left\langle c, c^{\prime}\right\rangle\right\rangle
$$

$$
\text { So }\left\langle p_{i j}(n), p_{i j}{ }^{\prime}(n)\right\rangle \leq\left\langle c, c^{\prime}\right\rangle
$$

(2) Next we show that $p^{n} p^{n-1}$

Let $\left\langle p_{i j}(n), p_{i j}{ }^{\prime}(n)\right\rangle=\left\langle c, c^{\prime}\right\rangle<\langle 1,0\rangle$
Then there exists indices $k_{1}, k_{2}, \cdots, k_{n-1}$ such that $\left\langle p_{i k_{1}}, p_{i k_{1}}{ }^{\prime}\right\rangle \vee\left\langle p_{k_{1} k_{2}}, p_{k_{1}, k_{2}}{ }^{\prime}\right\rangle \vee \cdots \vee\left\langle p_{k_{n-1 j}}, p_{k_{n-1 j}}{ }^{\prime}=\left\langle c, c^{\prime}\right\rangle\right.$
Let $k_{0}=i$ and $k_{n}=j$.Then $k_{a}=k_{b}$ for some a and $b(a>b)$. Thus $\left\langle p_{k_{a} k_{a}}(a-b), p_{k_{a} k_{a}}(a-b)\right\rangle \leq\left\langle c, c^{\prime}\right\rangle$
So

$$
\begin{gathered}
\left\langle a_{k_{a} k_{a}}(a-b), a_{k_{a} k_{a}}(a-b)\right\rangle \leq\left\langle c, c^{\prime}\right\rangle \\
\left\langle a_{k_{a_{a} k_{a}}}, a_{\left.k_{a_{a}}{ }^{\prime}\right\rangle}\right\rangle \leq\left\langle c, c^{\prime}\right\rangle \\
\left\langle p_{k_{a} k_{a}}, p_{k_{a} k_{a}}{ }^{\prime}\right\rangle \leq\left\langle c, c^{\prime}\right\rangle
\end{gathered}
$$

Hence

$$
\begin{gathered}
\left\langle p_{i k_{1}}, p_{i k_{1}}^{\prime}\right\rangle \vee\left\langle p_{k_{1} k_{2}}, p_{k_{1}, k_{2}}^{\prime}\right\rangle \vee \cdots \vee\left\langle p_{k_{a-1} k_{a},}, p_{k_{a-1} k_{a}}^{\prime} \vee\left\langle p_{k_{a} k_{a}}^{(} b-a-1\right), p_{k_{a} k_{a}}^{\prime}\right\rangle \vee\left\langle p_{k_{b} k_{b+1}}, p_{k_{b} k_{b+1}}^{\prime}\right\rangle \vee \cdots \\
\vee\left\langle p_{k_{n-1 j}} p_{k_{n-1 j}}^{\prime}\right\rangle \leq\left\langle c, c^{\prime}\right\rangle
\end{gathered}
$$

$$
\begin{aligned}
& A \times P=\left(\begin{array}{ll}
\langle 1,0\rangle & \langle 0.1,0.5\rangle \\
\langle 0.3,0.5\rangle & \langle 1,0\rangle
\end{array}\right)\left(\begin{array}{ll}
\langle 0.1,0.6\rangle & \langle 0.5,0.2\rangle \\
\langle 0.4,0.5\rangle & \langle 0.3,0.2\rangle
\end{array}\right) \\
& A \times P=\left(\begin{array}{ll}
\langle 0.1,0.5\rangle & \langle 0.5,0.2\rangle \\
\langle 0.4,0.5\rangle & \langle 0.3,0.2\rangle
\end{array}\right) \\
& A^{2}=A \cdot A=\left(\begin{array}{lll}
\langle 1,0\rangle & \langle 0.1,0.5\rangle \\
\langle 0.3,0.5\rangle & \langle 1,0\rangle
\end{array}\right)\left(\begin{array}{ll}
\langle 1,0\rangle & \langle 0.1,0.5\rangle \\
\langle 0.3,0.5\rangle & \langle 1,0\rangle
\end{array}\right. \\
& A^{2}=\left(\begin{array}{ll}
\langle 1,0\rangle & \langle 0.1,0.5\rangle \\
\langle 0.3,0.5\rangle & \langle 1,0\rangle
\end{array}\right) \\
& S=A \stackrel{c}{\leftarrow}(A \times P) \\
& =\left(\begin{array}{ll}
\langle 1,0\rangle & \langle 0.1,0.5\rangle \\
\langle 0.3,0.5\rangle & \langle 1,0\rangle
\end{array}\right) \stackrel{c}{\leftarrow}\left(\begin{array}{ll}
\langle 0.1,0.5\rangle & \langle 0.5,0.2\rangle \\
\langle 0.4,0.5\rangle & \langle 0.3,0.2\rangle
\end{array}\right) \\
& S=\left(\begin{array}{ll}
\langle 1,0\rangle & \langle 0.1,0.5\rangle \\
\langle 0.3,0.5\rangle & \langle 1,0\rangle
\end{array}\right) \\
& S^{2}=S \cdot S=\left(\begin{array}{lll}
\langle 1,0\rangle & \langle 0.1,0.5\rangle \\
\langle 0.3,0.5\rangle & \langle 1,0\rangle
\end{array}\right)\left(\begin{array}{ll}
\langle 1,0\rangle & \langle 0.1,0.5\rangle \\
\langle 0.3,0.5\rangle & \langle 1,0\rangle
\end{array}\right)
\end{aligned}
$$

Therefore $\left.\left\langle p_{i j}^{(} n-1\right), p_{i j}{ }^{\prime}(n-1)\right\rangle \leq\left\langle c, c^{\prime}\right\rangle$.
Example 3.7 $A=\left(\begin{array}{ll}\langle 0.1,0.2\rangle & \langle 0,0.3\rangle \\ \langle 0.3,0,2\rangle & \langle 0,0.3\rangle\end{array}\right), P=\left(\begin{array}{ll}\langle 0.3,0.2\rangle & \langle 0,0.2\rangle \\ \langle 0.4,0.1\rangle & \langle 0.1,0.2\rangle\end{array}\right)$
$A^{2}=\left(\begin{array}{lll}\langle 0.1,0.2\rangle & \langle 0,0.3\rangle \\ \langle 0.3,0,2\rangle & \langle 0,0.3\rangle\end{array}\right)\left(\begin{array}{ll}\langle 0.1,0.2\rangle & \langle 0,0.3\rangle \\ \langle 0.3,0,2\rangle & \langle 0,0.3\rangle\end{array}\right)$
$A^{2}=\left(\begin{array}{ll}\langle 0.1,0.2\rangle & \langle 0,0.3\rangle \\ \langle 0.1,0.2\rangle & \langle 0,0.3\rangle\end{array}\right) \leq A(A$ is transitive $)$
$A^{3}=\left(\begin{array}{ll}\langle 0.1,0.2\rangle & \langle 0,0.3\rangle \\ \langle 0.1,0.2\rangle & \langle 0,0.3\rangle\end{array}\right)=A^{2}$
$=\left(\begin{array}{ll}\langle 0.3,0.2\rangle & \langle 0,0.2\rangle \\ \langle 0.3,0.2\rangle & \langle 0.1,0.2\rangle\end{array}\right)$
$P^{2}=\left(\begin{array}{lll}\langle 0.3,0.2\rangle & \langle 0,0.2\rangle & \\ \langle 0.4,0.1\rangle & \langle 0.1,0.2\rangle\end{array}\right)\left(\begin{array}{lll}\langle 0.3,0.2\rangle & \langle 0,0.2\rangle \\ \langle 0.4,0.1\rangle & \langle 0.1,0.2\rangle\end{array}\right)$
$P^{2} P=\left(\begin{array}{lll}\langle 0.3,0.2\rangle & \langle 0,0.2\rangle & \\ \langle 0.3,0.2\rangle & \langle 0.1,0.2\rangle\end{array}\right)\left(\begin{array}{ll}\langle 0.3,0.2\rangle & \langle 0,0.2\rangle \\ \langle 0.4,0.1\rangle & \langle 0.1,0.2\rangle\end{array}\right)$
$P^{3}=\left(\begin{array}{ll}\langle 0.3,0.2\rangle & \langle 0,0.2\rangle \\ \langle 0.3,0.2\rangle & \langle 0.1,0.2\rangle\end{array}\right)=P^{2}$
Theorem 3.8 If A is an $n \times n$ transitive matrix, $A \wedge I \geq P \geq A$ and $p \bullet p^{T} \leq\left\langle p_{i j}, p_{i j}{ }^{\prime}\right\rangle$ for some j, then $p^{n-1}=p^{n}$.
As a special care of Theorem 3.6 or Theorem 3.8 we obtain the following corollary where A is a transitive IFM.
Corollary 3.9 If A is an $n \times n$ transitive intuitionistic fuzzy matrix.

$$
A \bullet A^{T} \leq\left\langle a_{i j}, a_{i j}^{\prime}\right\rangle \text { for some } j \text { then } A^{n-1}=A^{n} .
$$

References

[1]Atanassov K., Intuitionistic Fuzzy Sets, VII ITKR’s Session, Sofia, June 1983.
[2]Atanassov K., A New Intuitionistic Fuzzy Implication from a Modal Type, Advance Studies in Contemporary Mathematics Vol.(12) (1), 2006, 117-122.
[3] M. Bhowmik and M. Pal, Some results on intuitionistic Fuzzy matrices and intuitionistic circulat fuzzy matrices, , Int. Journal of mathematical science 7 (1-2) (2008), 177-192.
[4] Hashimoto.H, Convergence of powers of a fuzzy transitive matrix, Fuzzy Sets and Systems, Vol.9, (1983), 153-160.
[5] Murugadas.P and Lalitha.K, Similarity and dissimilarity relation in Intuitionistic fuzzy matrices using implication operator, Annals of Fuzzy Mathematics and Informatics ISSN 2287-6235 12(6) (2016), 885-876.
[6]Muthuraji.T, Sriram. S and Murugadas .P, Decomposition of Intuitionistic fuzzy matrices, Int. Journal of Fuzzy Information and Engineering (2016)(6), 345-354.
[7]Riyaz Ahmad Padder and Murugadas .P.., Max-Max Operation on intuitionistic fuzzy Matrix, Annals of Fuzzy Mathematics and Informatic, Vol. 12(6), (2016), 757-766.
[8] Sriram and Murugadas P 2011, Contribution to a study on Generalized Fuzzy Matrices, Ph.D, Thesis, Department of Mathematics, Annamalai University, Tamil Nadu, India.
[9] Thomason.M.G, Convergence of powers of a fuzzy matrix, J. Math. Anal. Appl., Vol. 57 (1977), 476-480.
[10]Xu.Z and Yager .R.R., Some geometric operators based on Intuitionistic Fuzzy Sets, Int. Journal of General Systems, Vol. 35 (2006), 417-433.
[11]Zadeh L.A., Fuzzy Sets,Journal of Information and Control, Vol. 8 (1965), 338-353.

